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Outline

1. Brief overview of useful preconditioning strategies in matrix-free
environment

2. Approximate preconditioner updates for sequences of linear systems
in matrix-free environment



J. Duintjer Tebbens, M. Tůma 3

1. Matrix-free preconditioning

A well-known important advantage of Krylov subspace methods is that
they do not require the system to be stored explicitly; a matrix-vector
product (matvec) subroutine, mostly based on a function evaluation,
suffices.

⇒ important reducing of storage and computation costs.

Implementations of Krylov subspace methods where the system matrix is
not stored are called matrix-free.

Standard example: Solving a nonlinear system of equations with a
Newton-type method.

Solving the nonlinear system amounts to minimizing

min
x

‖F (x)‖, F : Rn → R
n.
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1. Matrix-free preconditioning

In every Newton iteration one solves a linear system of the form

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the (approximate) Jacobian of F evaluated at xk. Then a
matvec with J(xk) is replaced by the standard difference approximation

J(xk) · v ≈
F (xk + h‖xk‖v) − F (xk)

h‖xk‖
,

for some small h.

Preconditioning is often crucial for satisfactory convergence of Krylov
subspace methods.

Question: What preconditioners can be used in matrix-free environment
and how can they be used?
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1. Matrix-free preconditioning

Some preconditioners lend themselves very well for matrix-free
environment:

● Inner-outer iterations: We solve the preconditioned system

PAx = Pb,

where the product Pv approximates A−1v by performing a small
number of the Krylov subspace method itself. If the method is
matrix-free, then so is the preconditioning.

● Toeplitz, circulant or other structured preconditioners need not be stored
fully, their generators suffice. For instance, the product Pv can consist
of multiplication with a Toeplitz matrix done with the help of discrete FFT.

● The product Pv can also be performed as a Multigrid or Additive
Schwarz sweep
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1. Matrix-free preconditioning

● Deflation-based preconditioners are matrix-free when the Krylov
subspace method is. For instance, for GMRES the Arnoldi
decomposition

AVk = VkHk + hk,k+1vk+1e
T
k

is generated matrix-free. Ritz values and vectors are obtained from the
eigenpairs of Hk:

Hkyj = σjyj ⇒ {σj , Vkyj}

Deflation-based preconditioners are defined through projecting away
unwanted eigenspaces and have the compact form

P ≡ I − WkW T
k ,

for some approximate invariant subspace Wk of dimension k (see e.g.
[Burrage, Erhel, Pohl - 1996], [Frank, Vuik - 2000], [Loghin, Ruiz,
Touhami - 2004]).
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1. Matrix-free preconditioning

Well-known preconditioners like ILU, IC, AINV based on incomplete
decomposition need the system matrix explicitly ⇒ the system matrix has
to be estimated by matvecs ; for example a tridiagonal matrix
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can be easily obtained with matvecs with

(1, 0, 0, 1, 0, 0, . . . )T ,

(0, 1, 0, 0, 1, 0, . . . )T ,

(0, 0, 1, 0, 0, 1, . . . )T .
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1. Matrix-free preconditioning

In general, one uses a graph coloring algorithm to estimate a matrix A

whose sparsity pattern is given:

● Consider the so-called intersection graph G(AT A) with vertices
{1, . . . , n} and edges {{i, j}|(AT A)ij 6= 0}

● The graph coloring algorithm colors each edge such that no two
adjacent vertices have the same color

● Each group of vertices of the same color yields a matvec to find the
entries of the corresponding columns

Graph coloring algorithms try to minimize the number of colors, i.e. the
number of matvecs needed estimation. This is an NP-hard problem.

Note: Often a good approximation of A obtained with few matvecs suffices
to construct a good preconditioner [Cullum, Tůma - 2006].
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1. Matrix-free preconditioning

The estimation of the system matrix and the explicit storage of an
incomplete decomposition are somehow in contradiction with the
philosophy of matrix-free environment. Nevertheless this is done in many
applications where incomplete decompositions are the most robust
preconditioners available.

How about estimation of only a small part of A ? A simple example is a
Jacobi preconditioner which needs only the main diagonal, e.g. in
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Can the main diagonal be estimated more cheaply than the whole matrix ?
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1. Matrix-free preconditioning

Notation: Let the matvec Av be performed with a function evaluation,

A · v → G(v), G : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v) − F (x+)

h‖x+‖
≡ G(v).

and let the individual components Gi : Rn → R of G be defined through

Gi(v) = eT
i G(v).

Then a straightforward idea is to compute the main diagonal
{a+

11, . . . , a
+
nn} by the function component evaluations

aii = Gi(ei), 1 ≤ i ≤ n.

This makes sense if function component evaluations are inexpensive.
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1. Matrix-free preconditioning

Definition: We speak of separable function components if it is possible to
compute the function components Gi(v) at the cost of about one nth of
the full function evaluation G(v).

Function components may not be separable in complicated Finite Element
or Finite Volume computations where the contributions for each element
or volume are computed simultaneously.

Clearly, with separable function components the Jacobi preconditioners
can be computed with

aii = Gi(ei), 1 ≤ i ≤ n.

at the cost of only one full function evaluation.
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1. Matrix-free preconditioning

With separable function components it is also possible to apply
Gauss-Seidel preconditioners in a matrix-free fashion. We propose the
following, to our knowledge new strategy. Consider first the simple case

P = triu(A).

● During the initialization, estimate the main diagonal through

aii = Gi(ei), 1 ≤ i ≤ n.

● Solve the upper triangular system triu(A)z = y with the standard cycle

zi =
yi −

∑

j>i aijzj

aii

, i = n, n − 1, . . . , 1,

where the implicit sum
∑

j>i a+
ijzj can be computed as

∑

j>i

aijzj = eT
i A(0, . . . , 0, zi+1, . . . , zn)T ≈ Gi

(

(0, . . . , 0, zi+1, . . . , zn)T
)

.
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1. Matrix-free preconditioning

In this way we can solve any triangular system

triu(A)z = y

without explicit knowledge of the entries of A or triu(A). The costs are

1. n initial function component evaluations for estimation of the main
diagonal ⇒ about one full function evaluation

2. n function component evaluations for the backward substitution cycle
⇒ about one other full function evaluation

Clearly, a system
tril(A)z = y

can be solved analogously and hence more complex SOR-type
preconditioners like

P = tril(A)diag(A)−1triu(A),

possibly with relaxation parameters, can applied in this matrix-free way.
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2. Approximate preconditioner updates

Now consider a general sequence of linear systems

A(i)x = b(i), i = 1, 2, . . . , A(i) ∈ IR
n×n, b ∈ IR

n

Such sequences arise in numerous applications like CFD problems,
operation research problems, Helmholtz equations, . . .

The central question for efficient solution of sequences of linear systems
will always be:

How can we share part of the computational effort throughout the
sequence ?

We consider here only strategies related to preconditioning of Krylov
subspace methods.
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2. Approximate preconditioner updates

A very simple idea is to freeze the preconditioner [Knoll, Keyes - 2004],
e.g. use

M (1)A(i)x = M (1)b(i), i = 1, 2, . . .

for a reference preconditioner M (1).

Naturally, a frozen preconditioner will deteriorate when the system matrix
changes too much. One often recomputes a preconditioner periodically
for every mth linear system or uses some simple heuristic to determine
the moment for recomputing, like

● when the distance between the current matrix and the matrix
corresponding to the frozen preconditioner is larger than a tolerance;

● when the number of linear solver iterations grows larger than a
tolerance.
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2. Approximate preconditioner updates

To enhance the power of a frozen preconditioner one may also use
approximate preconditioner updates. A few approximate preconditioner
updates have been proposed:

● In [Meurant - 2001] we find approximate preconditioner updates of
incomplete Cholesky factorizations for symmetric positive definite
M-matrices.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; this has been done in
the symmetric positive definite case, see e.g. [Bergamaschi, Bru,
Martínez, Putti - 2006, Nocedal, Morales - 2000].

● In [Benzi, Bertaccini - 2003, 2004] banded preconditioner updates were
proposed for symmetric positive definite sequences.
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2. A nonsymmetric preconditioner update

The banded updates in [Benzi, Bertaccini - 2003, 2004] were extended
recently [DT, Tůma - 2007] yielding a preconditioner update which is:

● A black-box approximate preconditioner update designed for
nonsymmetric linear systems solved by arbitrary iterative methods.

● Its computation is much cheaper than the computation of a new
preconditioner.

● Simple algebraic updates which can be easily combined with other
(problem specific) strategies.

● Inspired by the banded preconditioner updates in [Benzi, Bertaccini -
2003, 2004]

In the following we focus on the preconditioner updates in [Benzi,
Bertaccini - 2003, 2004] and [DT, Tůma - 2007].
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2. Approximate preconditioner updates

Notation:

Consider two systems

Ax = b, and A+x+
= b+

preconditioned by M and M+ respectively and let

B ≡ A − A+.

In [Benzi, Bertaccini - 2003, 2004] it is assumed that the difference matrix
B is diagonal and that we have a triangular factorization

M = LDLH ≈ A or M = ZD−1ZT ≈ A−1.

Then the approximate preconditioner update is required to have the form

M+ = L(D − C)LH ≈ A+ or M+ = Z(D − C)−1ZT ≈ (A+)−1

for a C such that linear systems with the factor D − C are easily solvable.
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2. Approximate preconditioner updates

Consider C = L−1BL−H , then

A − M = A − LDLH = A − L(D − L−1BL−H)LH − B = A+ − M+,

i.e. we have equality of preconditioner accuracies

||A − M || = ||A+ − M+||

and we therefore hope M+ to be an update of quality comparable to M .

The factor D − C = D − L−1BL−H can be very dense; banded
approximations are used instead:

M+
k = L(D − Ck)LH , where Ck = L−1

k BL−H
k

and L−1
k is obtained by extracting the k − 1 lower diagonals of L−1.

Similarly Benzi and Bertaccini define the updates

M+
k = Z(D − Ck)−1ZH .
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2. Approximate preconditioner updates

Now let M be factorized as

M = LDU ≈ A,

then the choice
M+ = LDU − B

yields again
||A − M || = ||A+ − M+||.

We will approximate this ideal update LDU − B in two steps. First we use

LDU − B = L(DU − L−1B) ≈ L(DU − B) or

LDU − B = (LD − BU−1)U ≈ (LD − B)U

depending on whether L is closer to identity or U . Define the standard
splitting

B = LB + DB + UB.
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2. Approximate preconditioner updates

Then the second approximation step is

L(DU − B) ≈ L(DU − DB − UB) ≡ M+

(upper triangular update) or

(LD − B)U ≈ (LD − LB − DB)U ≡ M+

(lower triangular update). Then M+ is for free and its application asks for
one forward and one backward solve. Schematically,

type initialization solve step memory

Recomp A+ ≈ L+D+U+ solves with L+, D+U+ A+, L+, D+U+

Update — solves with L, DU, triu(B) A+, triu(A), L, DU

This is the basic idea; more sophisticated improvements are possible.
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2. Approximate preconditioner updates

Consider the following CFD problem (compressible supersonic flow):

● Frontal flow with Mach-number 10 around a cylinder, which leads to a
steady state.

● 500 steps of the implicit Euler method are performed.
● The grid consists of 20994 points, we use Finite Volume discretization

and system matrices are of dimension 83976. The number of
nonzeroes is about 1.33·106 for all matrices of the sequence.

● In the beginning, a strong shock detaches from the cylinder, which then
slowly moves backward through the domain until reaching the steady
state position.

● The iterative solver is BiCGSTAB with stopping criterion 10−7, the
implementation is in C++.
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2. Approximate preconditioner updates
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2. Approximate preconditioner updates

Now we return to matrix-free environment.

Recomputing a factorized preconditioner in matrix-free environment
requires for every linear system:

● A number of additional matvecs to estimate the current matrix
● When the nonzero pattern changes during the sequence: Rerunning

the graph coloring algorithm
● the actual incomplete factorization

Preconditioner recomputation is even more expensive in matrix-free
environment !

How about the usage of the preconditioner updates in matrix-free
environment?
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2. Approximate preconditioner updates

Recall the upper triangular update is of the form

M+ = L(DU − DB − UB)

based on the splitting

LB + DB + UB = B = A − A+.

Thus the update needs some entries of A and A+ and repeated
estimation is necessary.

However:

● A has been estimated before to obtain the reference ILU-factorization

● Of A+ we need to estimate only the upper triangular part

● Can there be taken any advantage of the fact we estimate only the
upper triangular part?
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2. Approximate preconditioner updates

Example:
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● estimating the whole matrix asks for n matvecs with all unit vectors;
● estimating the upper triangular part requires only 2 matvecs,

(1, . . . , 1, 0)T and (0, . . . , 0, 1)T .

The problem of estimating only the upper triangular part is an example of
a partial graph coloring problem [Pothen et al. - 2007].
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2. Approximate preconditioner updates

As we saw before, the graph coloring algorithm for a matrix C works on
the intersection graph

G(CT C).

We can prove: The graph coloring algorithm for triu(C) works on

G(triu(C)T triu(C)) ∪ GK , where

GK = ∪n
i=1Gi, Gi = (Vi, Ei) = (V, {{k, j}| cik 6= 0 ∧ cij 6= 0 ∧ k ≤ i < j}).

Combined with a priori sparsification, there may be needed significantly
less matvecs to estimate triu(C) than to estimate C. Summarizing,

type initialization solve step memory

Recomp est(A+), A+
≈ L+D+U+ solves with L+, D+U+ L+, D+U+

Update est(triu(A+)) solves with L, DU, triu(B) L, DU, triu(B)
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2. Approximate preconditioner updates

Table 1: Sequence from structural mechanics problem of dimension 4.936
solved by preconditioned GMRES(40).

ILUT(0.001,20), Psize ≈ 404 000

Matrix Recomp Freeze Updated

its fevals its fevals its fevals

A(0) 187 89 187 89 187 89

A(1) 89 89 393 0 146 25

A(2) 126 89 448 0 182 25

A(3) 221 89 480 0 184 25

A(4) 234 89 513 0 190 25

A(5) 193 89 487 0 196 25

A(6) 178 89 521 0 196 25

A(7) 246 89 521 0 196 25

overall fevals 2 186 3 639 1 966
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2. Approximate preconditioner updates

An alternative strategy assumes separable function components.

Notation: Let the matvec with the current matrix be replaced with a
function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

and let the corresponding components F+
i : Rn → R satisfy

F+
i (v) = eT

i F+(v)

and be computed at the cost of about one nth of the full function
evaluation F+(v).

Then the following strategy can be beneficial:

● The forward solves with L in M+ = L(DU − DB − UB) are trivial.
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2. Approximate preconditioner updates

● For the backward solves with DU − DB − UB, use a mixed
explicit-implicit strategy: Split

DU − DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).

We then have to solve the upper triangular systems
(

X + triu(A+)
)

z = y,

yielding the standard backward substitution cycle

zi =
yi −

∑

j>i xijzj −
∑

j>i a+
ijzj

xii + a+
ii

, i = n, n − 1, . . . , 1.
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2. Approximate preconditioner updates

In

zi =
yi −

∑

j>i xijzj −
∑

j>i a+
ijzj

xii + a+
ii

, i = n, n − 1, . . . , 1.

the sum
∑

j>i a+
ijzj can be computed by the function evaluation

∑

j>i

a+
ijzj = eT

i A+(0, . . . , 0, zi+1, . . . , zn)T ≈ F+
i

(

(0, . . . , 0, zi+1, . . . , zn)T
)

.

The diagonal {a+
11, . . . , a

+
nn} can be found by computing

a+
ii = F+

i (ei), 1 ≤ i ≤ n.

Summarizing, we have the cost comparison:

type initialization solve step memory

Recomp est(A+), A+
≈ L+D+U+ solves with L+, D+U+ L+, D+U+

Update est(diag(A+)) solves with L, DU , triu(A), F+ L, DU, triu(A)
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2. Approximate preconditioner updates

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u + Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1 − x)y(1 − y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 50 and a 91 × 91 grid.
● We use a Newton-type method and solve the resulting linear systems

with BiCGSTAB with right preconditioning.
● We use a flexible stopping criterion.
● Fortran implementation (embedded in the UFO - software for testing

nonlinear solvers).
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2. Approximate preconditioner updates

Table 2: Sequence from nonlinear convection-diffusion problem of dimen-
sion 8 281 with Reynolds number 50 solved with preconditioned BiCGStab
with flexible stopping criterion. The reference preconditioner is ILU(0).

Freeze Recomp. Lower tr. update Upper tr. update

linear solver iterations 410 122 153 186

Newton iterations 9 9 9 9

overall time in seconds 4.39 4.29 2.25 2.73
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For more details see:
● DUINTJER TEBBENS J, TŮMA M: Preconditioner Updates for Solving Sequences of Linear Systems in

Matrix-Free Environment, submitted to NLAA in 2008.

● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, Applied Numerical Mathematics vol. 58, no. 11, pp.1628–1641, 2008.

● DUINTJER TEBBENS J, TŮMA M: Improving Triangular Preconditioner Updates for Nonsymmetric Linear

Systems, LNCS vol. 4818, pp. 737–744, 2007.

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.

Thank you for your attention!
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